### NIST's Post-Quantum Cryptography Project

#### Rene Peralta NIST PQC team

NUTMIC 2017 Warsaw

#### **Quantum Computers**

- Potentially much more powerful than classical computers
  - Conjecture: A classical computer needs exponential time to simulate a quantum computer (in the general case)
  - Conjecture: quantum computers cannot solve NP-hard problems in polynomial time.
- Exponential speedups
  - Simulating the dynamics of physical processes
  - Factoring large integers (Shor's algorithm)
  - Discrete logarithms in any abelian group (Shor's algorithm)
- And some polynomial speedups
  - Unstructured search (Grover's alg.), collision finding

#### **Implications for Crypto**

 "Large" quantum computers would break most of our public-key crypto

RSA, Diffie-Hellman key exchange, elliptic curve crypto

Symmetric crypto would be affected, but not broken

 Keys will have to be longer.

### Long-term privacy and security implications

- Full transition to alternatives takes a long time (> 10 years ).
- Today's data needs to remain secure 5-10 years (longer in some cases, such as medical data).

### NIST's PQC project

- To monitor progress in quantum computers and quantum algorithms.
- To find and standardize quantum-resistant alternatives for PKE, key-agreement, and digital signatures.
- To ensure transparency of the process and legitimacy of the outcome.

#### Not a Competition

- We hope at the end of the day there will be significant community consensus.
- We may standardize several algorithms.
- The evaluation criteria is not set in stone, it may evolve during the next few years.

#### **The Call For Proposals**

- Candidate algorithms may now be submitted <u>http://csrc.nist.gov/groups/ST/post-quantum-</u> <u>crypto/cfp-announce-dec2016.html</u>
- Deadline is November 30, 2017

#### **The PQC Forum**

- The wording of the CFP followed public discussion on the pqc-forum (<u>pqc-forum@nist.gov</u>).
- This is also where submissions and germane issues such as evaluation criteria will be discussed.
- To join send mail to <u>pqc-forum-request@nist.gov</u> with subject=subscribe

#### **Proposals sought**

- Public-key encryption
- Key-encapsulation
- Digital signature

# Out of scope for this CFP but still of interest to the PQC project

- Stateful hash-based signatures
- Hybrid modes

#### **Post-Quantum Cryptography**

| Cryptosystems | Hard problem                                                                             | Trapdoor                                                                 |
|---------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Lattice-based | Finding short vectors in<br>a high-dimensional<br>lattice                                | Nice basis for the<br>lattice (short,<br>almost-orthogonal<br>vectors)   |
| Code-based    | Decoding a random<br>binary linear code                                                  | Linear trans-<br>formations that<br>reveal structure of<br>the code      |
| Multivariate  | Solving a random system<br>of multivariate quadratic<br>equations over a finite<br>field | Linear trans-<br>formations that<br>reveal structure of<br>the equations |

#### More ...

- Stateless hash-based signatures
  - May be too big ...
- Isogenies of supersingular elliptic curves
  - Useful for key exchange?

#### Quantum key distribution

- Information-theoretic security
- Requires optical fiber, distance limited to ~200 km
- Chinese model ...

#### **Security Evaluation**

- Cryptanalysis: what are the best known attacks?
- Foundations: do we believe an underlying primitive is hard for quantum computers? (in practice we are likely to see two assertions:
  - problem is hard for classical computers;
  - No clear quantum speedup beyond Grover's.
- Security proofs can reduce hardness to that of an underlying primitive.

## How well do these cryptosystems work in practice?

- Size of keys, time/circuit complexity
- Size of messages, size of signatures
- Ease of implementation, how to set the parameters
- Does it fit nicely with TLS, other higher-level protocols?
- Vulnerabilities to side channel attacks?

#### LWE Problem ("learning with errors")

- Secret s in (Z<sub>q</sub>)<sup>n</sup>
   q = poly(n)
- Given (enough) samples (a,b) in  $(Z_q)^n \times Z_q$ 
  - a is uniformly random
  - b = a<sup>T</sup>s + e, where e is Gaussian distributed, w/ std dev q/poly(n)
- Can we determine s?
  - "Decoding a random linear code over  $Z_{q}$ "
- Claim: samples (a,b) look pseudorandom!

#### **How Things Look Like Now**

- Signatures: hash-based , code-based, lattice-based, multivariate...
- PKE : lattice-based, code-based, multivariate, ...
- Key agreement: PKE, lattice-based, isogeny-based, ...

#### **How Things Look Like Now**

- Speed looks good.
- Key sizes may increase significantly.
- Some signature sizes look big.
- Possibly significant increase in ciphertext size for short plaintexts.
- We need industry to do an impact assessment.

#### **Public Discussion**

- Ongoing discussion regarding "security-levels" and derived parametrization.
- Suspicion that NIST is just doing NSA's bidding.
- Demands that future standards make bad implementations harder.

#### TIMELINE

| Dec 20, 2016                                                                  | Formal Call for Proposals            |  |
|-------------------------------------------------------------------------------|--------------------------------------|--|
| Nov 30, 2017                                                                  | Deadline for submissions             |  |
| Early 2018                                                                    | Workshop - Submitter's Presentations |  |
| 3-5 yearsAnalysis Phase - NIST will report<br>1-2 workshops during this phase |                                      |  |
| 2 years later                                                                 | Draft Standards ready                |  |

